Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Wildl Dis ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584308

RESUMO

Wild turkeys (Meleagris gallopavo) are an important game species throughout the geographic range. Populations throughout multiple regions of the US have been declining, including in Kentucky, US, raising concerns among managers and resource users. To better understand the overall population health, we performed postmortem examinations and targeted pathogen, mineral, and toxicant testing on 36 adult male, apparently healthy, wild turkeys that were hunter harvested in western Kentucky during April 2018. We found that birds were in fair to good nutritional condition with no significant gross or microscopic lesions. Ticks (Amblyomma spp.) and lice (three species) were present on 94 and 31% of birds, respectively. We commonly detected intestinal nematodes and cestodes and found coccidian oocysts in 39% and capillarid eggs in 6% of birds. The prevalences of lymphoproliferative disease virus and reticuloendotheliosis virus were 39 and 11%, respectively. Spleen samples tested with PCR were positive for Borrelia burgdorferi, Haemoproteus sp., and Leucocytozoon sp. in 11, 83, and 3%, respectively. Based on a subjective histologic assessment of testis tissues, most birds had widespread and abundant sperm present. Mineral analysis and broad toxicant screening on liver samples from 32 turkeys were unremarkable. Further work is needed to assess potential population risk factors and to determine individual- and population-level impacts of pathogens on adults and poults.

2.
Mov Ecol ; 12(1): 4, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38229127

RESUMO

BACKGROUND: Central place foragers must acquire resources and return to a central location after foraging bouts. During the egg laying (hereafter laying) period, females are constrained to a nest location, thus they must familiarize themselves with resources available within their incubation ranges after nest site selection. Use of prospecting behaviors by individuals to obtain knowledge and identify profitable (e.g., resource rich) locations on the landscape can impact demographic outcomes. As such, prospecting has been used to evaluate nest site quality both before and during the reproductive period for a variety of species. METHODS: Using GPS data collected from female eastern wild turkeys (Meleagris gallopavo silvestris) across the southeastern United States, we evaluated if prospecting behaviors were occurring during laying and what landcover factors influenced prospecting. Specifically, we quantified areas prospected during the laying period using a cluster analysis and the return frequency (e.g., recess movements) to clustered laying patches (150-m diameter buffer around a clustered laying period location) during the incubation period. RESULTS: The average proportion of recess movements to prospected locations was 56.9%. Nest fate was positively influenced (µ of posterior distribution with 95% credible 0.19, 0.06-0.37, probability of direction = 99.8%) by the number of patches (90-m diameter buffer around a clustered laying period location) a female visited during incubation recesses. Females selected for areas closer to the nest site, secondary roads, hardwood forest, mixed pine-hardwood forest, water, and shrub/scrub, whereas they avoided pine forest and open-treeless areas. CONCLUSIONS: Our findings suggest that having a diverse suite of clustered laying patches to support incubation recesses is impactful to nest fate. As such, local conditions within prospected locations during incubation may be key to successful reproductive output by wild turkeys. We suggest that prospecting could be important to other phenological periods. Furthermore, future research should evaluate how prospecting for brood-rearing locations may occur before or during the incubation period.

3.
Sci Rep ; 13(1): 18639, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903898

RESUMO

In semi-arid environments, resources necessary for survival may be unevenly distributed across the landscape. Gould's wild turkeys (Meleagris gallopavo mexicana) are spatially restricted to mountainous semi-arid areas of southwestern United States and Mexico, and information on their distribution and habitat use is limited. We described how landcover type and topographical features influenced space use and habitat selection by Gould's wild turkeys in southeastern Arizona. We used GPS data from 51 Gould's wild turkeys to describe resource selection during 2016-2017 in southeastern Arizona, USA. We estimated home ranges and calculated resource selection functions using distance from landcover types, slope, aspect, and elevation at used locations and random locations within individual home ranges. Gould's wild turkeys selected areas closer to pine forest and water. Likewise, Gould's wild turkeys selected locations with moderate elevations of 1641 ± 235 m (range = 1223-2971 m), and on north and west facing slopes with a 10° ± 8.5 (range = 0.0-67.4°) incline. Our findings suggest that conserving portions of the landscape with appropriate topography and landcover types as described above will promote habitat availability for Gould's wild turkeys.


Assuntos
Animais Selvagens , Ecossistema , Animais , Arizona , Sudoeste dos Estados Unidos , México , Perus
4.
Sci Rep ; 13(1): 16632, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789205

RESUMO

Within home ranges, animals repeatedly visit certain areas. Recursive movement patterns are widespread throughout the animal kingdom, but are rarely considered when developing resource selection models. We examined how behavioral state-dependent recursive movements influenced reource selection of eastern wild turkey (Meleagris gallopavo silvestris) broods as they aged from day 1 to 28. Because broods become more plastic in behaviors once they begin roosting off the ground, we separated data into broods that were ground roosting (1-13 days) and tree roosting (14-28 days). We used Hidden Markov Models to identify 2 behavioral states (restricted and mobile). We extracted state-specific recursive movements based on states and specific step lengths, which we integrated into a step selection analysis to evaluate resource selection. We found that in a restricted state, ground roosting broods spent less time in areas of mixed pine-hardwoods and more time in areas with greater vegetation density. Tree roosting broods revisited areas closer to shrub/scrub landcover types, and areas with greater vegetation density. Tree roosting broods also spent less time near mixed pine-hardwoods, while spending more time in areas with greater vegetation density. We found that in a mobile state, ground roosting broods revisited areas closer to secondary roads and mixed pine-hardwoods, but farther from hardwoods. Tree roosting broods revisited areas farther from secondary roads and with greater vegetation density. Tree roosting broods also spent more time in areas closer to pine. Resource selection varied depending on behavioral state and recursive movements. However, revisitation and residence time impacted selection in both ground and tree roosting broods. Our findings highlight the need to consider how behaviors can influence movement decisions and ultimately resource selection.


Assuntos
Comportamento de Retorno ao Território Vital , Árvores , Animais , Perus , Movimento
5.
Microbiol Resour Announc ; 12(7): e0024823, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37272806

RESUMO

Listeria monocytogenes is responsible for severe foodborne disease and major economic losses, but its potential reservoirs in natural ecosystems remain poorly understood. Here, we report the draft genome sequences of 158 L. monocytogenes strains isolated from black bears (Ursus americanus) in the southeastern United States between 2014 and 2017.

6.
Ecol Evol ; 13(6): e10171, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325717

RESUMO

Coordination in timing of reproduction is driven by multiple ecological and sociobiological processes for a wide array of species. Eastern wild turkeys (Meleagris gallopavo silvestris) use a male dominance polygynous mating system, where males communicate with females via elaborate courtship displays and vocalizations at display sites. Most females prefer to mate with dominant males; therefore, asynchronous breeding and nesting may occur which can disproportionately influence individual fitness within breeding groups. For female wild turkeys, there are reproductive advantages associated with earlier nesting. As such, we evaluated reproductive asynchrony within and between groups of GPS-tagged female eastern wild turkeys based on timing of nest initiation. We examined 30 social groups with an average of seven females per group (range 2-15) during 2014-2019 in west central Louisiana. We found that the estimated number of days between first nest initiation across females within groups varied between 3 and 7 days across years, although we expected 1-2 days to occur between successive nesting attempts of females within groups based on observations of captive wild turkeys in the extant literature. The number of days between successive nest attempts across females within groups was lower for successful than failed attempts, and nests with an average of 2.8 days between initiation of another nest were more likely to hatch. Our findings suggest that asynchronous reproduction may influence reproductive success in female wild turkeys.

7.
Ecol Evol ; 12(11): e9540, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36440319

RESUMO

Coyotes (Canis latrans) colonized the southeastern United States over the last century as large predators, including the red wolf (Canis rufus) and eastern cougar (Puma concolor), were extirpated from the region. As a generalist carnivore, the coyote preys on white-tailed deer (Odocoileus virginianus) and various smaller mammals, birds, and vegetation. While resource selection by coyotes has been well documented at the home-range scale, little is known about their foraging behavior, which is an important factor in thoroughly understanding influences of coyotes on prey and sympatric carnivores. We assessed third-order resource selection of coyotes at sites across Alabama, Georgia, and South Carolina during 2015-2016. Using GPS collars, we tracked 41 resident coyotes across four calendar seasons and identified suspected foraging areas using recursive analysis where individuals repeatedly returned to known locations. We found that resident coyotes selected for open landcover types throughout the year, while avoiding primary and secondary roads. Additionally, resident coyotes avoided forested landcover types while selecting for forest edges except from April to June when they foraged within interior forest away from edges. Previous studies have documented substantive predation rates on white-tailed deer neonates by coyotes, and that fawn mortality may increase in forested landscapes away from forest edge. Our findings indicate that foraging coyotes may select forest cover types during spring where fawns are more vulnerable to predation. Additionally, there has been debate in the literature as to how coyotes obtain consistent levels of deer in their diets outside of fawning and fall hunting seasons. Our study indicates that use of road-kill carcasses by coyotes was an unlikely explanation for the presence of deer in coyote diets throughout the year, as coyotes in our study were not observed using roads during foraging excursions.

8.
Ecol Evol ; 12(6): e9018, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35784066

RESUMO

Gobbling activity of Eastern wild turkeys (Meleagris gallopavo silvestris; hereafter, turkeys) has been widely studied, focusing on drivers of daily variation. Weather variables are widely believed to influence gobbling activity, but results across studies are contradictory and often equivocal, leading to uncertainty in the relative contribution of weather variables to daily fluctuations in gobbling activity. Previous works relied on road-based auditory surveys to collect gobbling data, which limits data consistency, duration, and quantity due to logistical difficulties associated with human observers and restricted sampling frames. Development of new methods using autonomous recording units (ARUs) allows researchers to collect continuous data in more locations for longer periods of time, providing the opportunity to delve into factors influencing daily gobbling activity. We used ARUs from 1 March to 31 May to detail gobbling activity across multiple study sites in the southeastern United States during 2014-2018. We used state-space modeling to investigate the effects of weather variables on daily gobbling activity. Our findings suggest rainfall, greater wind speeds, and greater temperatures negatively affected gobbling activity, whereas increasing barometric pressure positively affected gobbling activity. Therefore, when using daily gobbling activity to make inferences relative to gobbling chronology, reproductive phenology, and hunting season frameworks, stakeholders should recognize and consider the potential influences of extended periods of inclement weather.

9.
Ecol Evol ; 12(3): e8725, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35356555

RESUMO

Coyotes (Canis latrans) are a highly adaptable canid species whose behavioral plasticity has allowed them to persist in a wide array of habitats throughout North America. As generalists, coyotes can alter movement patterns and change territorial strategies between residency (high site fidelity) and transiency (low site fidelity) to maximize fitness. Uncertainty remains about resident and transient coyote movement patterns and habitat use because research has reached conflicting conclusions regarding patterns of habitat use by both groups. We quantified effects of habitat on resident and transient coyote movement behavior using first passage time (FPT) analysis, which assesses recursive movement along an individual's movement path to delineate where they exhibit area-restricted search (ARS) behaviors relative to habitat attributes. We quantified monthly movement rates for 171 coyotes (76 residents and 53 transients) and then used estimated FPT values in generalized linear mixed models to quantify monthly habitat use for resident and transient coyotes. Transients had greater movement rates than residents across all months except January. Resident FPT values were positively correlated with agricultural land cover during fall and winter, but negatively correlated with agriculture during spring. Resident FPT values were also negatively correlated with developed habitats during May-August, deciduous land cover during June-August, and wetlands during September-January except November. FPT values of transient coyotes were positively correlated with developed areas throughout much of the year and near wetlands during July-September. Transient FPT values were negatively correlated with agriculture during all months except June and July. High FPT values (ARS behavior) of residents and transients were generally correlated with greater densities of edge habitat. Although we observed high individual variation in space use, our study found substantive differences in habitat use between residents and transients, providing further evidence that complexity and plasticity of coyote habitat use is influenced by territorial strategy.

10.
BMC Zool ; 7(1): 33, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37170305

RESUMO

BACKGROUND: Gloger's rule postulates that animals should be darker colored in warm and humid regions where dense vegetation and dark environments are common. Although rare in Canis populations, melanism in wolves is more common in North America than other regions globally and is believed to follow Gloger's rule. In the temperate forests of the southeastern United States, historical records of red wolf (Canis rufus) and coyote (Canis latrans) populations document a consistent presence of melanism. Today, the melanistic phenotype is extinct in red wolves while occurring in coyotes and red wolf-coyote hybrids who occupy the red wolf's historical range. To assess if Gloger's rule could explain the occurrence and maintenance of melanistic phenotypes in Canis taxa, we investigated differences in morphology, habitat selection, and survival associated with pelage color using body measurements, GPS tracking data, and long-term capture-mark-recapture and radio-telemetry data collected on coyotes and hybrids across the southeastern United States. RESULTS: We found no correlation between morphometrics and pelage color for Canis taxa. However, we observed that melanistic coyotes and hybrids experienced greater annual survival than did their gray conspecifics. Furthermore, we observed that melanistic coyotes maintained larger home ranges and exhibited greater selection for areas with dense canopy cover and wetlands than did gray coyotes. CONCLUSIONS: In the southeastern United States, pelage color influenced habitat selection by coyotes and annual survival of coyotes and hybrids providing evidence that Gloger's rule is applicable to canids inhabiting regions with dense canopy cover and wetlands. Greater annual survival rates observed in melanistic Canis may be attributed to better concealment in areas with dense canopy cover such as coastal bottomland forests. We suggest that the larger home range sizes of melanistic coyotes may reflect the trade-off of reduced foraging efficiency in lower quality wetland habitat for improved survival. Larger home ranges and differential use of land cover by melanistic coyotes may facilitate weak assortative mating in eastern coyote populations, in which melanistic animals may have lower success of finding compatible mates in comparison to gray conspecifics. We offer that our observations provide a partial explanation for why melanism is relatively low (< 10%) but consistent within coyote populations throughout southeastern parts of their range.

11.
Ecol Evol ; 11(14): 9575-9588, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34306644

RESUMO

In canids, resident breeders hold territories but require different resources than transient individuals (i.e., dispersers), which may result in differential use of space, land cover, and food by residents and transients. In the southeastern United States, coyote (Canis latrans) reproduction occurs during spring and is energetically demanding for residents, but transients do not reproduce and therefore can exhibit feeding behaviors with lower energetic rewards. Hence, how coyotes behave in their environment likely differs between resident and transient coyotes. We captured and monitored 36 coyotes in Georgia during 2018-2019 and used data from 11 resident breeders, 12 predispersing residents (i.e., offspring of resident breeders), and 11 transients to determine space use, movements, and relationships between these behaviors and landcover characteristics. Average home range size for resident breeders and predispersing offspring was 20.7 ± 2.5 km² and 50.7 ± 10.0 km², respectively. Average size of transient ranges was 241.4 ± 114.5 km². Daily distance moved was 6.3 ± 3.0 km for resident males, 5.5 ± 2.7 km for resident females, and 6.9 ± 4.2 km for transients. We estimated first-passage time values to assess the scale at which coyotes respond to their environment, and used behavioral change-point analysis to determine that coyotes exhibited three behavioral states. We found notable differences between resident and transient coyotes in regard to how landcover characteristics influenced their behavioral states. Resident coyotes tended to select for areas with denser vegetation while resting and foraging, but for areas with less dense vegetation and canopy cover when walking. Transient coyotes selected areas closer to roads and with lower canopy cover while resting, but for areas farther from roads when foraging and walking. Our findings suggest that behaviors of both resident and transient coyotes are influenced by varying landcover characteristics, which could have implications for prey.

12.
Ecol Evol ; 10(20): 11752-11765, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33144998

RESUMO

Females must balance physiological and behavioral demands of producing offspring with associated expenditures, such as resource acquisition and predator avoidance. Nest success is an important parameter underlying avian population dynamics. Galliforms are particularly susceptible to low nest success due to exposure of ground nests to multiple predator guilds, lengthy incubation periods, and substantive reliance on crypsis for survival. Hence, it is plausible that nesting individuals prioritize productivity and survival differently, resulting in a gradient of reproductive strategies. Fine-scale movement patterns during incubation are not well documented in ground-nesting birds, and the influence of reproductive movements on survival is largely unknown. Using GPS data collected from female wild turkeys (n = 278) across the southeastern United States, we evaluated the influence of incubation recess behaviors on trade-offs between nest and female survival. We quantified daily recess behaviors including recess duration, recess frequency, total distance traveled, and incubation range size for each nest attempt as well as covariates for nest concealment, nest attempt, and nest age. Of 374 nests, 91 (24%) hatched and 39 (14%) females were depredated during incubation. Average nest survival during the incubation period was 0.19, whereas average female survival was 0.78. On average, females took 1.6 daily unique recesses (SD = 1.2), spent 2.1 hr off the nest each day (SD = 1.8), and traveled 357.6 m during recesses (SD = 396.6). Average nest concealment was 92.5 cm (SD = 47). We found that females who took longer recess bouts had higher individual survival, but had increased nest loss. Females who recessed more frequently had lower individual survival. Our findings suggest behavioral decisions made during incubation represent life-history trade-offs between predation risk and reproductive success on an unpredictable landscape.

13.
J Hered ; 111(3): 277-286, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32090268

RESUMO

The red wolf (Canis rufus), a legally recognized and critically endangered wolf, is known to interbreed with coyotes (Canis latrans). Declared extirpated in the wild in 1980, red wolves were reintroduced to northeastern North Carolina nearly a decade later. Interbreeding with coyotes was thought to be restricted to a narrow geographic region adjacent to the reintroduced population and largely believed to threaten red wolf recovery. However, red wolf ancestry was recently discovered in canids along the American Gulf Coast, igniting a broader survey of ancestry in southeastern canid populations. Here, we examine geographic and temporal patterns of genome-wide red wolf ancestry in 260 canids across the southeastern United States at over 164 000 SNP loci. We found that red wolf ancestry was most prevalent in canids sampled from Texas in the mid-1970s, although non-trivial amounts of red wolf ancestry persist in this region today. Further, red wolf ancestry was also observed in a subset of coyotes inhabiting North Carolina, despite management efforts to limit the occurrence of hybridization events. Lastly, we found no evidence of substantial red wolf ancestry in southeastern canids outside of these 2 admixture zones. Overall, this study provides a genome-wide survey of red wolf ancestry in canids across the southeastern United States, which may ultimately inform future red wolf restoration efforts.


Assuntos
Canidae/genética , Coiotes/genética , Introgressão Genética , Lobos/genética , Animais , Raposas/genética , Genética Populacional , Filogeografia , Sudeste dos Estados Unidos , Análise Espaço-Temporal
14.
Microb Biotechnol ; 13(3): 706-721, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31713354

RESUMO

Listeria monocytogenes is the causative agent of the foodborne illness listeriosis, which can result in severe symptoms and death in susceptible humans and other animals. L. monocytogenes is ubiquitous in the environment and isolates from food and food processing, and clinical sources have been extensively characterized. However, limited information is available on L. monocytogenes from wildlife, especially from urban or suburban settings. As urban and suburban areas are expanding worldwide, humans are increasingly encroaching into wildlife habitats, enhancing the frequency of human-wildlife contacts and associated pathogen transfer events. We investigated the prevalence and characteristics of L. monocytogenes in 231 wild black bear capture events between 2014 and 2017 in urban and suburban sites in North Carolina, Georgia, Virginia and United States, with samples derived from 183 different bears. Of the 231 captures, 105 (45%) yielded L. monocytogenes either alone or together with other Listeria. Analysis of 501 samples, primarily faeces, rectal and nasal swabs for Listeria spp., yielded 777 isolates, of which 537 (70%) were L. monocytogenes. Most L. monocytogenes isolates exhibited serotypes commonly associated with human disease: serotype 1/2a or 3a (57%), followed by the serotype 4b complex (33%). Interestingly, approximately 50% of the serotype 4b isolates had the IVb-v1 profile, associated with emerging clones of L. monocytogenes. Thus, black bears may serve as novel vehicles for L. monocytogenes, including potentially emerging clones. Our results have significant public health implications as they suggest that the ursine host may preferentially select for L. monocytogenes of clinically relevant lineages over the diverse listerial populations in the environment. These findings also help to elucidate the ecology of L. monocytogenes and highlight the public health significance of the human-wildlife interface.


Assuntos
Animais Selvagens , Listeria monocytogenes , Listeriose , Ursidae , Animais , Animais Selvagens/microbiologia , Listeria monocytogenes/isolamento & purificação , Listeria monocytogenes/fisiologia , Listeriose/epidemiologia , Listeriose/microbiologia , Listeriose/transmissão , Sudeste dos Estados Unidos/epidemiologia , Ursidae/microbiologia
15.
Ecol Evol ; 9(6): 3389-3404, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30962900

RESUMO

Prior to 1900, coyotes (Canis latrans) were restricted to the western and central regions of North America, but by the early 2000s, coyotes became ubiquitous throughout the eastern United States. Information regarding morphological and genetic structure of coyote populations in the southeastern United States is limited, and where data exist, they are rarely compared to those from other regions of North America. We assessed geographic patterns in morphology and genetics of coyotes with special consideration of coyotes in the southeastern United States. Mean body mass of coyote populations increased along a west-to-east gradient, with southeastern coyotes being intermediate to western and northeastern coyotes. Similarly, principal component analysis of body mass and linear body measurements suggested that southeastern coyotes were intermediate to western and northeastern coyotes in body size but exhibited shorter tails and ears from other populations. Genetic analyses indicated that southeastern coyotes represented a distinct genetic cluster that differentiated strongly from western and northeastern coyotes. We postulate that southeastern coyotes experienced lower immigration from western populations than did northeastern coyotes, and over time, genetically diverged from both western and northeastern populations. Coyotes colonizing eastern North America experienced different selective pressures than did stable populations in the core range, and we offer that the larger body size of eastern coyotes reflects an adaptation that improved dispersal capabilities of individuals in the expanding range.

16.
Ecol Evol ; 9(24): 14053-14065, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31938503

RESUMO

In ground nesting upland birds, reproductive activities contribute to elevated predation risk, so females presumably use multiple strategies to ensure nest success. Identification of drivers reducing predation risk has primarily focused on evaluating vegetative conditions at nest sites, but behavioral decisions manifested through movements during incubation may be additional drivers of nest survival. However, our understanding of how movements during incubation impact nest survival is limited for most ground nesting birds. Using GPS data collected from female Eastern Wild Turkeys (n = 206), we evaluated nest survival as it relates to movement behaviors during incubation, including recess frequency, distance traveled during recesses, and habitat selection during recess movements. We identified 9,361 movements off nests and 6,529 recess events based on approximately 62,065 hr of incubation data, and estimated mean nest attentiveness of 84.0%. The numbers of recesses taken daily were variable across females (range: 1‒7). Nest survival modeling indicated that increased cumulative distance moved during recesses each day was the primary driver of positive daily nest survival. Our results suggest behavioral decisions are influencing trade-offs between nest survival and adult female survival during incubation to reduce predation risk, specifically through adjustments to distances traveled during recesses.

17.
Genes (Basel) ; 9(12)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30544757

RESUMO

Rediscovering species once thought to be extinct or on the edge of extinction is rare. Red wolves have been extinct along the American Gulf Coast since 1980, with their last populations found in coastal Louisiana and Texas. We report the rediscovery of red wolf ghost alleles in a canid population on Galveston Island, Texas. We analyzed over 7000 single nucleotide polymorphisms (SNPs) in 60 canid representatives from all legally recognized North American Canis species and two phenotypically ambiguous canids from Galveston Island. We found notably high Bayesian cluster assignments of the Galveston canids to captive red wolves with extensive sharing of red wolf private alleles. Today, the only known extant wild red wolves persist in a reintroduced population in North Carolina, which is dwindling amongst political and taxonomic controversy. Our rediscovery of red wolf ancestry after almost 40 years introduces both positive opportunities for additional conservation action and difficult policy challenges.

18.
PLoS One ; 13(10): e0203703, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30303970

RESUMO

To ensure reproductive success, Canis species establish contiguous mosaics of territories in suitable habitats to partition space and defend limiting resources. Consequently, Canis species can exert strong effects on prey populations locally because of their year-round maintenance of territories. We assessed prey use by coyotes (Canis latrans) by sampling scats from within known territories in southeastern Alabama and the Savannah River area of Georgia and South Carolina. We accounted for the size and habitat composition of coyote home ranges to investigate the influence of space use, vegetation density, and habitat type on coyote diets. Coyote use of prey was influenced by a combination of mean monthly temperature, home range size, vegetation density, and hardwood forests. For example, coyote use of adult white-tailed deer (Odocoileus virginianus) was associated with cooler months and smaller home ranges, whereas use of rabbits (Sylvilagus spp.) was associated with cooler months, larger home ranges, and less vegetation density. Coyotes in our study relied primarily on nutritionally superior mammalian prey and supplemented their diet with fruit when available, as their use of mammalian prey did not appreciably decrease with increasing use of fruit. We suggest that differential use of prey by coyotes is influenced by habitat heterogeneity within their home ranges, and prey-switching behaviors may stabilize local interactions between coyotes and their food resources to permit stable year-round territories. Given that habitat composition affects coyote prey use, future studies should also incorporate effects of habitat composition on coyote distribution and abundance to further identify coyote influences on prey communities.


Assuntos
Coiotes/fisiologia , Comportamento de Retorno ao Território Vital/fisiologia , Comportamento Predatório/fisiologia , Animais , Cervos/fisiologia , Ecossistema , Mamíferos/fisiologia , Coelhos , Estações do Ano
19.
Ecol Evol ; 8(8): 3927-3940, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29721269

RESUMO

Anthropogenic hybridization of historically isolated taxa has become a primary conservation challenge for many imperiled species. Indeed, hybridization between red wolves (Canis rufus) and coyotes (Canis latrans) poses a significant challenge to red wolf recovery. We considered seven hypotheses to assess factors influencing hybridization between red wolves and coyotes via pair-bonding between the two species. Because long-term monogamy and defense of all-purpose territories are core characteristics of both species, mate choice has long-term consequences. Therefore, red wolves may choose similar-sized mates to acquire partners that behave similarly to themselves in the use of space and diet. We observed multiple factors influencing breeding pair formation by red wolves and found that most wolves paired with similar-sized conspecifics and wolves that formed congeneric pairs with nonwolves (coyotes and hybrids) were mostly female wolves, the smaller of the two sexes. Additionally, we observed that lower red wolf abundance relative to nonwolves and the absence of helpers increased the probability that wolves consorted with nonwolves. However, successful pairings between red wolves and nonwolves were associated with wolves that maintained small home ranges. Behaviors associated with territoriality are energetically demanding and behaviors (e.g., aggressive interactions, foraging, and space use) involved in maintaining territories are influenced by body size. Consequently, we propose the hypothesis that size disparities between consorting red wolves and coyotes influence positive assortative mating and may represent a reproductive barrier between the two species. We offer that it may be possible to maintain wild populations of red wolves in the presence of coyotes if management strategies increase red wolf abundance on the landscape by mitigating key threats, such as human-caused mortality and hybridization with coyotes. Increasing red wolf abundance would likely restore selection pressures that increase mean body and home-range sizes of red wolves and decrease hybridization rates via reduced occurrence of congeneric pairs.

20.
Heredity (Edinb) ; 120(3): 183-195, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29269931

RESUMO

Human-mediated range expansions have increased in recent decades and represent unique opportunities to evaluate genetic outcomes of establishing peripheral populations across broad expansion fronts. Over the past century, coyotes (Canis latrans) have undergone a pervasive range expansion and now inhabit every state in the continental United States. Coyote expansion into eastern North America was facilitated by anthropogenic landscape changes and followed two broad expansion fronts. The northern expansion extended through the Great Lakes region and southern Canada, where hybridization with remnant wolf populations was common. The southern and more recent expansion front occurred approximately 40 years later and across territory where gray wolves have been historically absent and remnant red wolves were extirpated in the 1970s. We conducted a genetic survey at 10 microsatellite loci of 482 coyotes originating from 11 eastern U.S. states to address how divergent demographic histories influence geographic patterns of genetic diversity. We found that population structure corresponded to a north-south divide, which is consistent with the two known expansion routes. Additionally, we observed extremely high genetic diversity, which is atypical of recently expanded populations and is likely the result of multiple complex demographic processes, in addition to hybridization with other Canis species. Finally, we considered the transition of allele frequencies across geographic space and suggest the mid-Atlantic states of North Carolina and Virginia as an emerging contact zone between these two distinct coyote expansion fronts.


Assuntos
Coiotes/genética , Variação Genética , Genética Populacional , Distribuição Animal , Animais , Frequência do Gene , Técnicas de Genotipagem , Hibridização Genética , Repetições de Microssatélites , Modelos Genéticos , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...